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MULTIMODULUS ELASTICITY THEORY

UDC 539.3I. Yu. Tsvelodub

A variant of the multimodulus elasticity theory for isotropic materials is proposed under the assump-
tion that the shear modulus in Hooke’s law is a constant and the volume modulus depends on the
sign of the first invariant of the stress tensor. Plane problems (plane strain and generalized plane
stressed state) and problems of plate bending are considered. Some examples are given.
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The first postulates of the multimodulus elasticity theory (MMET) were developed in [1–4], which started a
series of numerous publications continuing up to now. The papers published on this topic before 1980s were reviewed
in [5, 6]. For the class of isotropic materials, the main problem in the MMET reduces to generalizing the classical
elastic potential containing two constants (shear and volume moduli) and consistent with Hooke’s law to media with
different degrees of resistance to tension and compression. Various approaches were proposed in [1–6]; the number
of independent elastic constants in these approaches varied from three to five (the maximum possible number):
Young’s moduli E+ and E−, Poisson’s ratios under tension and compression ν+ and ν−, and shear modulus under
pure shear G0 (see also [7]). In [1, 2, 4, 7], the elastic potential contains the third invariant of the stress tensor
in addition to the first and second invariants commonly used in the classical variant. In contrast to the approach
developed in [8], this leads to emergence of tensor-nonlinear relations between stresses and strains. There is a
current trend to construct tensor-linear constitutive equations of the MMET, based on three-constant potentials,
independent of the third invariant [9, 10]. A simple variant of this theory is proposed in the present work; in this
variant, the shear modulus G0 is a constant, and the volume modulus K depends on the sign of the first invariant
of the stress tensor. Such an approach allows plane problems in stresses to be reduced to formulations described
in [11]. Problems of bending of multimodulus plates are also considered. A system of equations is derived for
deflections and the function of membrane forces. An example of bending of a clamped elliptical plate is considered.

1. Simple Three-Constant MMET. For the classical isotropic medium that obeys Hooke’s law, the
elastic potential Φ, or the specific energy, can be presented as

Φ = Φ1(Iσ) + Φ2(σi), Φ1 =
1 − 2ν

6E
I2
σ, Φ2 =

1 + ν

3E
σ2

i , (1.1)

where Iσ = σkk is the first invariant, σ2
i = (3/2)σ0

klσ
0
kl, σ0

kl = σkl−(1/3)Iσδkl (k, l = 1, 2, 3), σi is the stress intensity,
σkl, σ0

kl, and δkl are the components of the stress tensor, stress deviator, and unit tensor, E is Young’s modulus,
and ν is Poisson’s ratio; summation is performed over repeated indices from 1 to 3. The term Φ1 = I2

σ/(18K)
is the specific work of volume changing and the term Φ2 = σ2

i /(6G) is the specific work of form changing; K =
E/[3(1 − 2ν)] is the volume modulus of elasticity and G = E/[2(1 + ν)] is the shear modulus.

A presentation similar to (1.1) of the elastic potential for multimodulus isotropic media in the form of the
sum of the specific works of volume and form changing was proposed in [7], where Φ1 depends on I2

σ and sign Iσ,
while Φ2 is a function of the stress deviator invariants. The relations proposed describe the transition to the plastic
state, where the material is plastically incompressible and the hydrostatic pressure, i.e., the value of Iσ, does not
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depend on the emergence of the plastic flow. Moreover, owing to the second term Φ2 containing the function of
the angle of the type of the stressed state ξ, which can be expanded into a series in powers of sin 3ξ by virtue of
isotropy, the number N of independent elastic constants may be varied from three to five (as was noted above, these
are the numbers of constants used in various MMET variants). For N = 5, the expression for Φ has the form [7]

Φ = BI2
σ + (D0 + D1 sin 3ξ + D2 sin2 3ξ)2σ2

i , (1.2)

where

D0 = (6G0)−1/2, D1 =
1
2

(1 + ν−
3E−

)1/2

− 1
2

(1 + ν+

3E+

)1/2

,

D2 =
1
2

(1 + ν−
3E−

)1/2

+
1
2

(1 + ν+

3E+

)1/2

− (6G0)−1/2,

B =
1 − 2ν+

6E+
H(Iσ) +

1 − 2ν−
6E−

H(−Iσ), H(x) =
{

1, x > 0,

0, x < 0,
sin 3ξ = −(9/2)σ0

knσ0
nlσ

0
kl/σ3

i ,

E+ and E− are Young’s moduli, ν+ and ν− are Poisson’s ratios under tension and compression, and G0 is the shear
modulus under pure shear.

It follows from (1.2) that Φ = Φ(Iσ , σi, ξ) is a continuously differentiable function of its arguments, but
∂2Φ/∂I2

σ = 2B has a discontinuity at Iσ = 0. For D1 �= 0 or D2 �= 0, i.e., for the potential Φ possessing terms
depending on the third invariant of the stress deviator, the corresponding relations between stresses and strains are
tensor-nonlinear. As the objective of the present work is to construct a simple tensor-linear MMET, we confine
ourselves to three constants in Eq. (1.2), assuming that D1 = D2 = 0. Introducing for convenience c = B and
a = D2

0, we obtain the following relation from Eq. (1.2):

Φ = aσ2
i + cI2

σ, a =
1 + ν+

3E+
=

1 + ν−
3E−

=
1

6G0
,

c = c+H(Iσ) + c−H(−Iσ), c± = (1 − 2ν±)/(6E±).
(1.3)

From Eq. (1.3), we obtain

εkl =
∂Φ
∂σkl

= 3aσ0
kl + 2cIσδkl (k, l = 1, 2, 3). (1.4)

It should be noted that relations (1.3) and (1.4) can be obtained from a four-constant model [3], where the
law of elasticity also depends on the sign of the first invariant Iσ: for Iσ > 0, relations (1.1) with the constants ν+

and E+ hold; for Iσ < 0, relations (1.1) with the constants ν− and E− are valid. For Iσ = 0, the law of elasticity
is indeterminate, and the potential Φ gas a discontinuity. To eliminate this discontinuity, we need to impose the
equality of the shear moduli G+ = E+/[2(1 + ν+)] and G− = E−/[2(1 + ν−)] under tension and compression; as a
result, the model has three constants.

It follows from Eqs. (1.3) and (1.4) that ε11 = σ/E+ and ε22 = ε33 = −ν+σ/E+ under uniaxial tension
(when the only stress component differing from zero is σ11 = σ > 0), ε11 = σ/E− and ε22 = ε33 = −ν−σ/E− under
uniaxial compression (σ11 = σ < 0), and 2ε12 = τ/G0 under torsion (σ12 = τ).

Thus, relations (1.3) and (1.4) describe a multimodulus isotropic medium and are a simple generalization
of the classical Hooke’s law, where the shear modulus G is a constant and the volume modulus K depends on the
sign of the first invariant Iσ of the stress tensor, i.e., the values of K under all-sided tension and compression are
different.

The model constants a, c+, and c− are determined from the following experiments: 1) under pure shear,
where the stress σ12 = τ is prescribed and the strain ε12 = 3aτ is measured; 2) under uniaxial tension (σ11 = σ > 0
and Iε = 6c+σ) and compression (σ11 = σ < 0 and Iε = 6c−σ), where the stress σ11 = σ is prescribed and the
volume strain Iε = εkk is measured.

Note, in contrast to the model developed in [1, 2], where the constitutive equations are written in the
main axes of the stress tensor and the coefficients in these equations depend on the signs of the three main stresses,
formulas (1.4), which are valid in an arbitrary Cartesian coordinate system, contain only one coefficient c depending
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on the sign of the invariant quantity Iσ (because a = const). Despite the linearity of the relations between the main
stresses and strains, the relations between the stress tensor and the strain tensor in [1, 2] are nonlinear [7].

2. Stability and Uniqueness of the Solution of MMET Boundary-Value Problems. The condition
of stability in the small is formulated as follows [7]. For all infinitesimal increments of stresses δσkl and the
corresponding increments of strains δεkl, the following inequality is valid:

δσklδεkl > 0, δσklδσkl �= 0. (2.1)

For continuously differentiable functions εkl = εkl(σmn), this inequality is equivalent to a similar inequality for finite
increments [12]

ΔσklΔεkl > 0, ΔσklΔσkl �= 0, Δσkl = σ
(1)
kl − σ

(2)
kl , Δεkl = ε

(1)
kl − ε

(2)
kl , (2.2)

i.e., to the condition of stability in the large, which ensures the uniqueness of the solution of the boundary-value
problems.

As was demonstrated in [7, 12], for inequality (2.1) to be satisfied for a potential of the general form
Φ = Φ(Iσ , σi, ξ), a necessary and sufficient condition is the positive determinacy of the matrix ‖aij‖ with the
coefficients

a11 =
∂2Φ
∂σ2

i

, a22 =
∂Φ
∂σi

σi +
∂2Φ
∂ξ2

, a33 =
∂2Φ
∂I2

σ

,

a12 = σi
∂

∂σi

( 1
σi

∂Φ
∂ξ

)
, a23 =

∂2Φ
∂Iσ ∂ξ

, a13 =
∂2Φ

∂Iσ ∂σi
.

(2.3)

By virtue of relations (2.3), for the three-constant potential [10]

Φ = aσ2
i + 2bσiIσ + cI2

σ ,

the conditions of stability have the form of the inequalities

a > 0, ac − b2 > 0, aσi + bIσ > 0,

the latter imposing a constraint on the stressed state. This situation can be avoided by using a potential similar to
that proposed in [9]:

Φ = aI2
2 + 2bI2Iσ + cI2

σ , I2
2 = σklσkl.

The conditions of stability that impose constraints on the elastic constants a, b, and c only were obtained
in [13]. These constrains, however, are much more rigorous that the constrains for potential (1.3), which reduce to
its positive determinacy [a > 0 and c(sign Iσ) > 0]. Indeed, we obtain the following equation from (1.3):

ΔεklΔσkl = 3aΔσ0
klΔσ0

kl + 2Δ(cIσ)ΔIσ, ΔIσ = I(1)
σ − I(2)

σ . (2.4)

If both stressed states refer to the region Iσ > 0 or Iσ < 0, the second term in (2.4) is 2c(ΔIσ)2. Then, with
allowance for relations (2.2), we have a > 0, c+ > 0, and c− > 0 [this also follows from relations (2.3), because Φ
from Eq. (1.3) in the regions considered is a twice continuously differentiable function of σi and Iσ]. For instance,
for I

(1)
σ > 0 and I

(2)
σ < 0, we have c(1) = c+, c(2) = c−, and Δ(cIσ)ΔIσ = [c+I

(1)
σ − c−I

(2)
σ ][I(1)

σ − I
(2)
σ ] > 0, because

both terms are positive; for I
(1)
σ < 0 and I

(2)
σ > 0, we have Δ(cIσ) < 0 and ΔIσ < 0.

Thus, the condition of stability in the large (2.2), which guarantees the uniqueness of the solution of the
boundary-value problems, is equivalent for the proposed potential (1.3) to the condition of satisfaction of the
inequalities a > 0, c+ > 0, and c− > 0.

3. Plane MMET Problems. The advantage of the elasticity theory proposed is manifested in solving
plane problems in stresses. Let us consider plane strain and the generalized plane stressed state and demonstrate
that they are reduced to formulations used in [11].

In the case of plane strain, we assume that ε33 = 0 and find the following relation from Eq. (1.4):

σ33 = (a − 2c)(σ11 + σ22)/[2(a + c)].

Then, the expressions for the components εkl (k, l = 1, 2) acquire the form

ε11 = a1σ11 + a2σ22, ε22 = a1σ22 + a2σ11,

ε12 = 3aσ12, a1 = 3a(a + 4c)/[2(a + c)], a2 = 3a(2c− a)/[2(a + c)].
(3.1)
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Introducing the function of stresses F = F (x1, x2), such that σ11 = F,22, σ22 = F,11, and σ12 = −F,12 (the
subscript k after the comma means the derivative with respect to the coordinate xk; k = 1, 2), and substituting these
equalities into Eqs. (3.1), we obtain ΔΔF = 0 from the condition of strain compatibility ε11,22 + ε22,11 = 2ε12,12.
This equality is valid for c = c+ and for c = c−, i.e., F = F (x1, x2) is a biharmonic function both for Iσ > 0 and
for Iσ < 0.

In the case of the generalized plane stressed state, Eqs. (1.4) yield relations of the form (3.1) for strains,
where a1 = 2(a + c) and a2 = 2c − a, and the equality ΔΔF = 0 for F .

Thus, as in the classical plane problems, the stress function F in both cases is biharmonic; therefore, the
methods of solving plane boundary-value problems in stresses are similar to the methods described in [11]. This is
fairly understandable, because the stressed state of, at least, a simply connected solid under fixed external loads is
independent of the elastic constants [11], i.e., substitution of the constant c− for the constant c+ in Eqs. (1.3) does
not affect the stress distribution.

According to (3.1), the strains can be determined from the stresses found. In both cases, we have sign Iσ =
sign (σ11+σ22), because Iσ = σ11+σ22+σ33 = 3a(σ11+σ22)/[2(a+c)] in the case of plane strain, and Iσ = σ11+σ22

in the generalized plane stressed state.
4. Problems of Plate Bending. Let us consider a plate of constant thickness h, which is deformed under

the action of bending moments and (or) surface loads distributed along the plate edges; the upper layers of the
plate become extended, and the lower layers of the plate become compressed (Iσ < 0 for −h/2 ≤ z < δh/2 and
Iσ > 0 for δh/2 < z ≤ h/2; δ = δ(x1, x2), where |δ| < 1). The coordinate system is chosen so that the mid-plane of
the plate coincides with the plane Ox1x2, and the z axis is perpendicular to the latter.

The strains and displacements of the plate are related as [6]

εkl = zκkl + ε0
kl, 2ε0

kl = uk,l + ul,k, κkl = −w,kl, (4.1)

where κkl are the curvatures, uk are the displacements of the mid-plate, and w is the deflection.
If there are no tangential components of the external load, the equilibrium equations have the form [6]

Qk = Mkl,l, Qk,k = −q, Nkl,l = 0, Qk =

h/2∫

−h/2

σ3k dz,

Mkl =

h/2∫

−h/2

σklz dz, Nkl =

h/2∫

−h/2

σkl dz,

(4.2)

where Qk and Mkl are the shear forces and moments, Nkl are the membrane forces, and q is the intensity of surface
loads. In Eqs. (4.1) and (4.2) and further, we have k, l = 1, 2.

For a1 = 2(a + c) and a2 = 2c − a, the relations between the stresses and strains have the form (3.1).
Inverting these relations, we obtain

σ11 = Aε11 + Bε22, σ22 = Aε22 + Bε11, σ12 = ε12/(3a),

A = 2(a + c)/[3a(a + 4c)], B = (a − 2c)/[3a(a + 4c)].
(4.3)

Taking into account that the function of the form f = f [z, A(sign Iσ)] [A = A+H(Iσ) + A−H(−Iσ), where
A± = A(c±)] obeys the equality

h/2∫

−h/2

f dz =

δh/2∫

−h/2

f(z, A−) dz +

h/2∫

δh/2

f(z, A+) dz,

we find the following expressions for Nkl and Mkl from Eqs. (4.1)–(4.3):

N11 = A1ε
0
11 + B1ε

0
22 + C(κ11 + κ22), N22 = A1ε

0
22 + B1ε

0
11 + C(κ11 + κ22),

N12 = hε0
12/(3a), M11 = C(ε0

11 + ε0
22) + A2κ11 + B2κ22,
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M22 = C(ε0
11 + ε0

22) + A2κ22 + B2κ11, M12 = h3
κ12/(36a),

2A1 = h(P − 2θδ), 2B1 = (Q − 2θδ), (4.4)

4C = h2θ(1 − δ2), 24A2 = h3(P − 2θδ3), 24B2 = h3(Q − 2θδ3),

P = A+ + A− = 2G0[(1 − ν+)−1 + (1 − ν−)−1], Q = B+ + B− = P − 4G0,

2θ = A+ − A− = B+ − B− = 2G0[(1 − ν+)−1 − (1 − ν−)−1].

Here the equalities from (1.3) were used for a, c+, and c−.
We divide the membrane forces, moments, and curvatures by Ph/2, Ph2/12, and 2/h, respectively, and

obtain their dimensionless values with a zero superscript. Then, with allowance for the equality δ = −(ε0
11 +

ε0
22)/(κ0

11 + κ
0
22) following from Eqs. (4.1) and (4.3) and the condition Iσ = 0 for z = δh/2, formulas (4.4) acquire

the form

N0
11 = ε0

11 + αε0
22 + r(1 + δ2)(κ0

11 + κ
0
22),

N0
22 = ε0

22 + αε0
11 + r(1 + δ2)(κ0

11 + κ
0
22), N12 = (1 − α)ε0

12,

M0
11 = κ

0
11 + ακ

0
22 + r(3 − δ2)(ε0

11 + ε0
22), M0

12 = (1 − α)κ0
12,

(4.5)
M0

22 = κ
0
22 + ακ

0
11 + r(3 − δ2)(ε0

11 + ε0
22), δ = −(ε0

11 + ε0
22)/(κ0

11 + κ
0
22),

α = Q/P = 1 − 2(1 − ν+)(1 − ν−)/(2 − ν+ − ν−) (0 < α < 1),

r = θ/P = (ν+ − ν−)/[2(2 − ν+ − ν−)].

The constant r from Eqs. (4.5) can be considered as a small parameter. Then, the function δ = δ(x1, x2)
defining the displacement of the neutral surface (Iσ = 0) from the mid-plane (z = 0) is a quantity of the order
of r. At least, this fact is valid for the problem of pure bending of a rectangular plate by moments M1 and M2

uniformly distributed along the plate edges. It follows from the equilibrium equations (4.2) that Nkl = 0, M11 = M1,
M22 = M2, and M12 = 0 at all points (x1, x2). Then, we find ε0

11 = ε0
22 from Eqs. (4.5); for the displacement δ, we

obtain the equation δ2−2βδ +1 = 0, where β = (1+α)/(4r). Thus, β and r are quantities of the same sign; hence,
we have |δ| = (|β| +

√
β2 − 1)−1 ≤ |β|−1 = 4|r|/(1 + α), i.e., δ ∼ r. The solution for δ exists if |β| ≥ 1. Based on

the known value of δ, we can easily find the curvatures κ
0
kl and strains ε0

kl from Eqs. (4.5).
Neglecting terms that contain the factor rδ2 (i.e., a quantity of the order of r3) in Eqs. (4.5), we find the

linear relations between the forces (N0
kl and M0

kl) and kinematic quantities (ε0
kl and κ

0
kl). Then, the first three

equations in (4.5) yield

(1 − α2)ε0
11 = N0

11 − αN0
22 − (1 − α)rκ

0,

(1 − α2)ε0
22 = N0

22 − αN0
11 − (1 − α)rκ

0, κ
0 = κ

0
11 + κ

0
22, (4.6)

(1 − α)ε0
12 = N0

12,

and the last three equations have the form

M0
11 = κ

0
11 + ακ

0
22 + 3rε0, M0

22 = κ
0
22 + ακ

0
11 + 3rε0,

M12 = (1 − α)κ0
12, ε0 = ε0

11 + ε0
22.

(4.7)

Introducing the function of the membrane forces F 0 = F 0(x1, x2), such that N0
11 = F 0

,22, N0
22 = F 0

,11, and
N0

12 = −F 0
,12, taking into account the equalities κ

0
kl = −w0

,kl (w0
,kl = hw,kl/2 are dimensionless quantities), and

substituting Eq. (4.6) into the equation of strain compatibility ε0
11,22 + ε0

22,11 − 2ε0
12,12 = 0, we obtain

ΔΔ[F 0 + r(1 − α)w0] = 0. (4.8)

From Eqs. (4.7) and the equilibrium equation M0
kl,kl = −q0 (q0 = 12q/(Ph2)), we find

ΔΔw0 − 3rΔε0 = q0. (4.9)
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It follows from Eqs. (4.6) that

ε0 = [N0
11 + N0

22 − 2r(κ0
11 + κ

0
22)]/(1 + α) = Δ(F 0 + 2rw0)/(1 + α).

Substituting this expression into Eq. (4.9), we obtain

ΔΔ[(1 + α − 6r2)w0 − 3rF 0] = (1 + α)q0. (4.10)

Thus, we obtain system (4.8), (4.10) to find the functions F 0 = F 0(x1, x2) and w0 = w0(x1, x2).
As an example, let us consider the problem of an elliptical plate clamped over the contour γ and subjected

to a uniformly distributed surface load q = const. There are no external forces applied to γ in the plane of the
plate, i.e., Nklnl = 0 (k = 1, 2); nk are the components of the unit vector of the external normal to γ. Hence, we
obtain the following boundary conditions on the contour γ defined by the equation x2

1b
−2
1 + x2

2b
−2
2 = 1:

w0 =
∂w0

∂n
= F 0 =

∂F 0

∂n
= 0. (4.11)

The solution of the boundary-value problem (4.8), (4.10), (4.11) is sought in the form

F 0 = A3ϕ(x1, x2), w0 = B3ϕ(x1, x2),

ϕ(x1, x2) = (x2
1b

−2
1 + x2

2b
−2
2 − 1)2;

(4.12)

conditions (4.11) are satisfied automatically thereby. Substituting Eqs. (4.12) into (4.8) and (4.10), we obtain two
equalities, which yield the constants A3 and B3:

A3 = −r(1 − α)q0/C1, B3 = q0/C1, C1 = 3(1 − 3r2)[8(b−4
1 + b−4

2 ) + (b1b2)−2].

5. Some Generalizations to More Complicated Media. Preserving the tensor-nonlinear relations
between the stresses and strains (or strain rates), we can generalize this approach to physically nonlinear media
with different properties under tension and compression. Examples of such media are nonlinearly elastic and
nonlinearly viscous media. The strain potentials in the first case or the strain-rate potential in the second case is a
uniform function of stresses of power n + 1 (n > 1). As is implied above, Eq. (1.3) with the right side risen to the
power (n + 1)/2 can be used as such a function.

Let us consider a nonlinearly viscous medium. The dissipative function W , which is the specific power of
dissipated energy and differs from the creep potential only by a constant factor (n + 1) [12], is defined as follows:

W = B0(σ2
i + c0I2

σ)(n+1)/2, W ≡ ηklσkl, c0 = c0
+H(Iσ) + c0

−H(−Iσ) (5.1)

[ηkl are the components of the strain rates; the function H = H(x) was defined in (1.2)]. Thus, we obtain the
tensor-linear relations between σkl and ηkl:

ηkl =
1

n + 1
∂W

∂σkl
=

B0

2
(σ2

i + c0I2
σ)(n−1)/2(3σ0

kl + 2c0Iσδkl).

Based on the data of torsion experiments (σ12 = τ), uniaxial tension (σ11 = σ > 0), and uniaxial compression
(σ11 = σ < 0), by comparing Eqs. (5.1) with the corresponding expressions for W under the above-indicated types
of the stressed state [12]: W = Bkp(

√
3τ)n+1, W = B+σn+1, and W = B−|σ|n+1, we determine the constants B0,

c0
+, and c0

−. As a result, we obtain

B0 = Bkp, c0
± = (B±/B0)2/(n+1) − 1,

where Bkp, B+, and B− are the creep coefficients under torsion, tension, and compression, respectively.
It follows from Eqs. (5.1) that the dissipative function W = W (σi, Iσ) for n > 1 [and, hence, the creep

potential equal to W/(n + 1)] is a twice continuously differentiable function everywhere, including the situation
with σi = Iσ = 0. Therefore, the condition of stability in the large (2.2) is equivalent to the positive determinacy
of a symmetric matrix with the coefficients aij from (2.3), i.e., to the condition of satisfaction of the inequalities
a11 > 0, a22 > 0, and a11a33 − a2

13 > 0, which reduce to the expressions B0 > 0, c0
+ > 0, and c0

− > 0. Thus, we
obtain the constraints on the creep coefficients: B+ > B0 and B− > B0.
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